

A Text Analysis of Trump's Tweets DataCamp Project

Kelompok 2 Pembimbing: Budi Sujatmiko, dr., M. Epid.

MEET THE TEAM

Pembimbing : Budi Sujatmiko, dr., M.Epid.

Anindya Nadira R. NPM. 130110200062

Farsya Azka K. NPM. 130110200066

Raihan Al Biruni

TABLE OF CONTENTS

Introduction

Project description.

Methods

Project requirements, methods, and tasks.

Discussion Result discussion & our innovative idea.

 $\sim\sim$

Introduction

Project Description


Project Description

Every non-hyperbolic tweet is from iPhone (his staff).

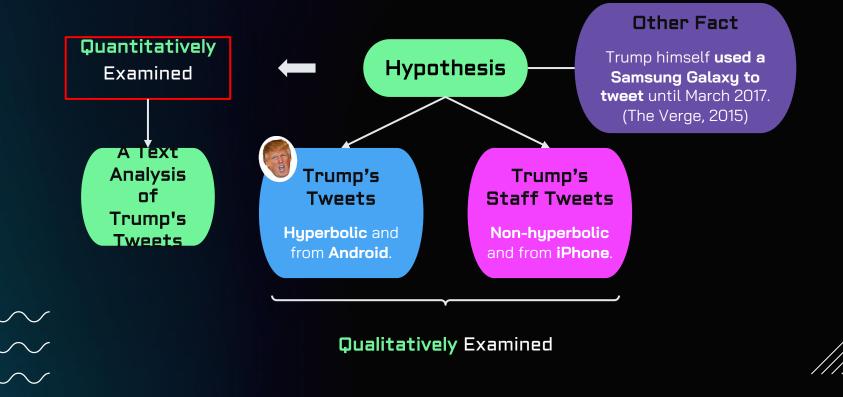
Every hyperbolic tweet is from Android (from him).

2:20 AM · Aug 7, 2016 · Tweetbot for iOS

Donald J. Trump @realDonaldTrump

Good luck #TeamUSA

Aug 6, 2016 at 11:11 AM


via Twitter for Android

Trump's tweets differences. (Twitter.com)

Project Description

Methods

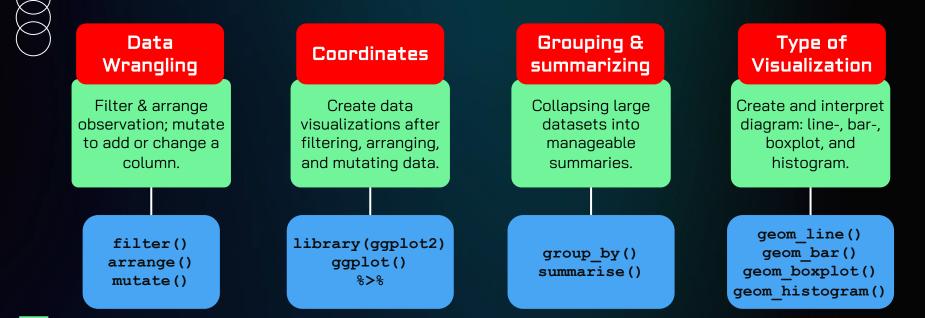
Project Requirements and Methods

Prerequisites

Sentiment Analysis in R	String Manipulation with stringr in R
Learn sentiment analysis by identifying positive and negative language, specific emotional intent	Learn how to pull character strings apart, put them back together and use the stringr package.
0000	00000
in Share Replay Course	in Share Replay Course
	R
R Introduction to the Tidyverse	R Intermediate Data Visualization with ggplot2
CRINE Introduction to the Tidyverse Get started on the path to exploring and visualizing your own data with the tidyverse, a powerful	
Get started on the path to exploring and visualizing	ggplot2 Learn to use facets, coordinate systems and statistics in ggplot2 to create meaningful

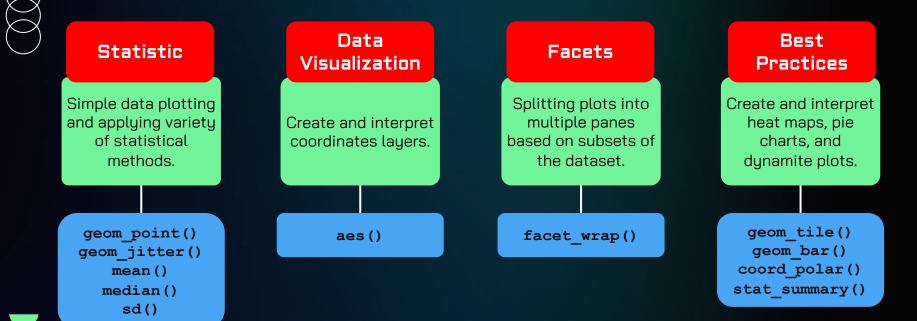
Prerequisite: Sentiment Analysis in R

- 1. Fast & dirty: Polarity scoring
 - Learn how to apply qdap's sentiment function called polarity()
- 1. Sentiment analysis the tidytext way
 - Explore 3 subjectivity lexicons from tidytext
 - Do an inner join to score some text
- 1. Visualizing sentiment
 - Make compelling visuals with your sentiment output
- 1. Case study: Airbnb reviews


Prerequisite: String Manipulation with stringr in R

1. String basics

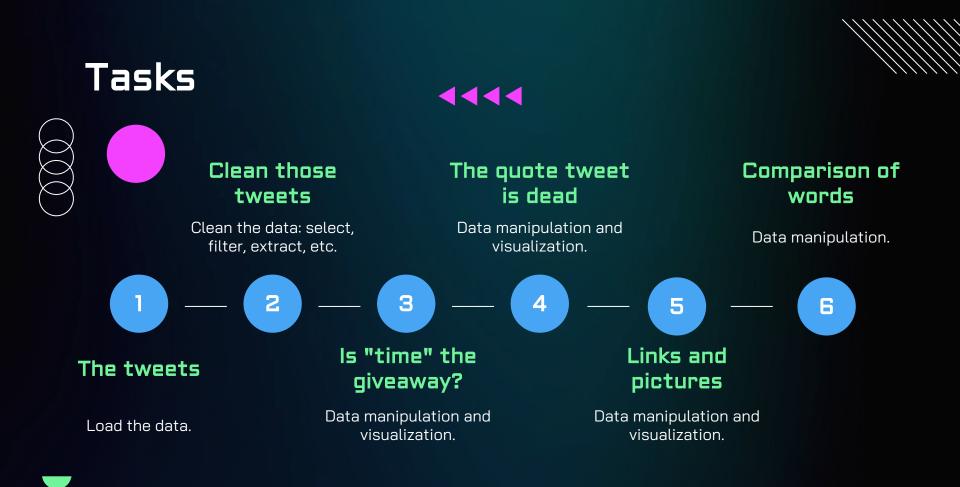
- How to enter strings in R
- How to control how numbers are transformed to strings
- How to combine strings together to produce output that combines text and nicely formatted numbers.
- 1. Introduction to stringr
 - How to detect specific patterns in strings
 - How to split strings apart
 - How to find and replace parts of strings.
- 1. Pattern matching with regular expressions
 - Regular expressions, a language for describing patterns in strings → manipulate strings
- . More advanced matching and manipulation
 - Capturing, back-referencing, é



Prerequisite: Introduction to the Tidyverse

Prerequisite: Intermediate Data Visualization with ggplot2

Method: Text Mining & Sentiment Analysis


Learned about this mental map demonstrating how text mining is the process of going from an unorganized state to an organized state \Rightarrow techniques aligning to feature extraction.

6 defined steps:

- 1. Define the problem & specific goals
- 2. Identify the text
- 3. Organize the text
- 4. Extract features
- 5. Analyze
- 6. Draw a conclusion/reach an insight

Project Task and Results

Task 1 | The Tweets

Goals Load the data.

1. The Tweets

STEP 01: Load the libraries

library(dplyr)
library(readr)
library(tidyr)
library(lubridate)

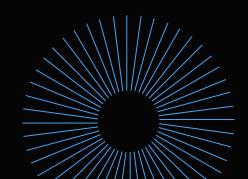
STEP 02: Read in the data

tweets <- read_csv("datasets/trump_tweets.csv", guess_max = 36000) %>%
filter(created at >= "2015-06-01", created at <= "2016-11-08")</pre>

STEP 03: Inspect the first six rows head (tweets)

source	id_str	text	created_at	retweet_count	in_reply_to_user_id_str	favorite_count	is_retweet
<chr></chr>	<dbl></dbl>	<chr></chr>	<dttm></dttm>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<lgl></lgl>
Twitter for Android	6.827032e+17	I would like to wish everyone A HAPPY AND HEALTHY NEW YEAR. WE MUST ALL WORK TOGETHER TO, FINALLY, MAKE AMERICA SAFE AGAIN AND GREAT AGAIN!	2015-12-31 23:21:49	6776	NA	16495	FALSE
Twitter for Android	6.827007e+17	Do you believe that The State Department, on NEW YEAR'S EVE, just released more of Hillary's e-mails. They just want it all to end. BAD!	2015-12-31 23:11:35	2755	NA	6824	FALSE
Twitter for iPhone	6.826351e+17	THANK YOU ILLINOIS! Let's not forget to get family & amp; friends- out to VOTE IN 2016! https://t.co/lg5kMbNLYK https://t.co/dtMAsIq4cf	2015-12-31 18:51:12	2468	NA	6047	FALSE

 $\overline{)}$



Task 2 Clean those tweets

Goals

To clean the data by extracting iPhone and Android tweets only.

2. Clean Those Tweets

Step 01

Count the number of tweets by device!

tweets %>% count(source)

Output [01]:

source	n
<chr></chr>	<int></int>
Twitter for Android	4240
Twitter for iPhone	2275
Twitter Web Client	1301
Twitter Ads	63
Instagram	47
Twitter for BlackBerry	45

Step 02

Select certain variables!

cleaned_tweets <- tweets %>%
 select(id str, source, text, created at)

Output [02]:

id_str	source	text	created_at
<dbl></dbl>	<chr></chr>	<chr></chr>	<dttm></dttm>
6.827032e+17	Twitter for Android	I would like to wish everyone A HAPPY AND HEALTHY NEW YEAR. WE MUST ALL WORK TOGETHER TO, FINALLY, MAKE AMERICA SAFE AGAIN AND GREAT AGAIN!	2015-12-31 23:21:49
6.827007e+17	Twitter for Android	Do you believe that The State Department, on NEW YEAR'S EVE, just released more of Hillary's e-mails. They just want it all to end. BAD!	2015-12-31 23:11:35
6.826351e+17	Twitter for iPhone	THANK YOU ILLINOIS! Let's not forget to get family & amp; friends- out to VOTE IN 2016! https://t.co/lg5kMbNLYK https://t.co/dtMAsIq4cf	2015-12-31 18:51:12
6.826053e+17	Twitter for iPhone	HAPPY BIRTHDAY to my son, @DonaldJTrumpJr! Very proud of you! #TBT https://t.co/ULerCEOCGX https://t.co/nbxPVdarJM	2015-12-31 16:52:38
6.825788e+17	Twitter for Android	I would feel sorry for @JebBush and how badly he is doing with his campaign other than for the fact he took millions of \$'s of hit ads on me	2015-12-31 15:07:18
6.825446e+17	Twitter for iPhone	#MakeAmericaGreatAgain #Trump2016 https://t.co/IEIXos0wh9	2015-12-31 12:51:35

2. Clean Those Tweets

Step 03

Filter with Twitter for Android and iPhone only!

Step 04

Extract "Android" and "iPhone" only!

Output [03]:

id_str	source	text	created_at
<dbl></dbl>	<chr></chr>	<chr></chr>	<dttm></dttm>
6.827032e+17	Twitter for Android	I would like to wish everyone A HAPPY AND HEALTHY NEW YEAR. WE MUST ALL WORK TOGETHER TO, FINALLY, MAKE AMERICA SAFE AGAIN AND GREAT AGAIN!	2015-12-31 23:21:49
6.827007e+17	Twitter for Android	Do you believe that The State Department, on NEW YEAR'S EVE, just released more of Hillary's e-mails. They just want it all to end. BAD!	2015-12-31 23:11:35
6.826351e+17	Twitter for iPhone	THANK YOU ILLINOIS! Let's not forget to get family & amp; friends- out to VOTE IN 2016! https://t.co/lg5kMbNLYK https://t.co/dtMAslq4cf	2015-12-31 18:51:12
6.826053e+17	Twitter for iPhone	HAPPY BIRTHDAY to my son, @DonaldJTrumpJr! Very proud of you! #TBT https://t.co/ULerCEOCGX https://t.co/nbxPVdarJM	2015-12-31 16:52:38
6.825788e+17	Twitter for Android	I would feel sorry for @JebBush and how badly he is doing with his campaign other than for the fact he took millions of \$'s of hit ads on me	2015-12-31 15:07:18
6.825446e+17	Twitter for iPhone	#MakeAmericaGreatAgain #Trump2016 https://t.co/IEIXos0wh9	2015-12-31 12:51:35

2. Clean Those Tweets

Step 03

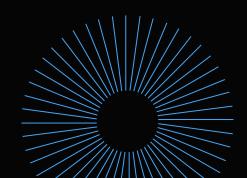
Filter with Twitter for Android and iPhone only!

Step 04

Extract "Android" and "iPhone" only!

Output [04]:

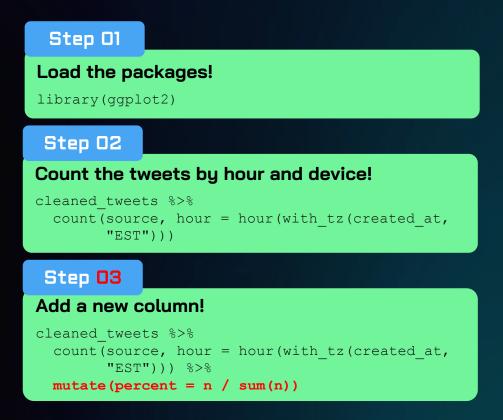
id_str	source	text	created_at
<dbl></dbl>	<chr></chr>	<chr></chr>	<dttm></dttm>
6.827032e+17	Android	I would like to wish everyone A HAPPY AND HEALTHY NEW YEAR. WE MUST ALL WORK TOGETHER TO, FINALLY, MAKE AMERICA SAFE AGAIN AND GREAT AGAIN!	2015-12-31 23:21:49
6.827007e+17	Android	Do you believe that The State Department, on NEW YEAR'S EVE, just released more of Hillary's e-mails. They just want it all to end. BAD!	2015-12-31 23:11:35
6.826351e+17	iPhone	THANK YOU ILLINOIS! Let's not forget to get family & amp; friends- out to VOTE IN 2016i https://t.co/lg5kMbNLYK https://t.co/dtMAslq4cf	2015-12-31 18:51:12
6.826053e+17	iPhone	HAPPY BIRTHDAY to my son, @DonaldJTrumpJr! Very proud of you! #TBT https://t.co/ULerCEOCGX https://t.co/nbxPVdarJM	2015-12-31 16:52:38
6.825788e+17	Android	I would feel sorry for @JebBush and how badly he is doing with his campaign other than for the fact he took millions of \$'s of hit ads on me	2015-12-31 15:07:18
6.825446e+17	iPhone	#MakeAmericaGreatAgain #Trump2016 https://t.co/IEIXos0wh9	2015-12-31 12:51:35



Task 3 Is "time" the giveaway?

Goals

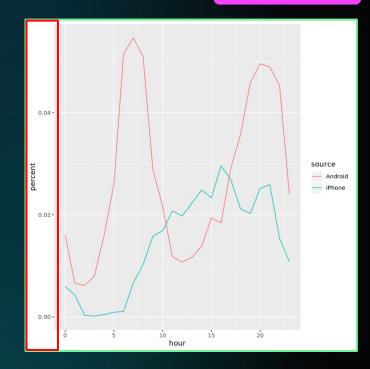
To spot the difference of time between Android tweets and iPhone tweets.



Output [02]:

source	hour	n
<chr></chr>	<int></int>	<int></int>
Android	0	104
Android	1	43
Android	2	40
Android	3	52
Android	4	104
Android	5	169

Output [03]:

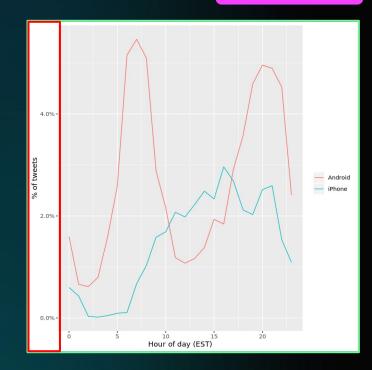

source	hour	n	percent
<chr></chr>	<int></int>	<int></int>	<dbl></dbl>
Android	0	104	0.015963162
Android	1	43	0.006600153
Android	2	40	0.006139678
Android	3	52	0.007981581
Android	4	104	0.015963162
Android	5	169	0.025940138

Step 04

Plot the percent of tweets by hour!

```
cleaned_tweets %>%
  count(source, hour = hour(with_tz(created_at,
     "EST"))) %>%
  mutate(percent = n / sum(n)) %>%
  ggplot(aes(hour, percent, color = source)) +
  geom_line()
```

Output [04]:


Step 05

Add some labels!

Interpretation

Android tweets are more often in the early morning or later in the evening. iPhone tweets are more often in the afternoon.

Output [05]:

Task 4 The quote tweet is dead

Goals

Create a bar plot of the number of tweets that are quoted and not quoted from each device.

4. The quote tweet is dead

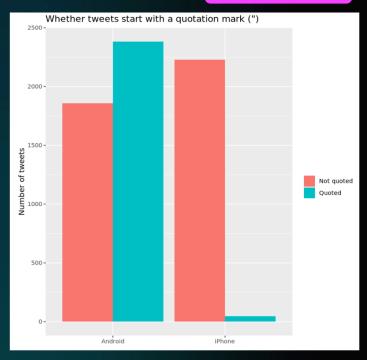
Step 01

Load the stringr package

library(stringr)

Step 02

Count the tweets to determine the number of tweets quoted or not by each device

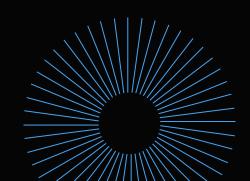

```
cleaned_tweets %>%
  count(source,
        quoted = ifelse(str_detect(text, '^"'),
"Quoted", "Not quoted")) %>%
```

Step 03

Plot the tweet by quoted or not by each device

```
ggplot(aes(source, n, fill = quoted)) +
  geom_bar(stat = "identity", position = "dodge")
+ labs(x = "", y = "Number of tweets", fill = "")
+ ggtitle('Whether tweets start with a quotation
mark (")')
```

Output [04]:



Task 5 | Links and Pictures

Goals

To create a bar plot of the number of tweets that do and do not have a picture/link from each device.

5. Links and Pictures

```
# Count the number of tweets with and without picture/links by
device
tweet picture counts <- cleaned tweets %>%
  filter(!str detect(text, '^"')) %>%
  count (source,
        picture = ifelse(str detect(text, "t.co"),
                          "Picture/link", "No
picture/link"))
# Make a bar plot
ggplot(tweet picture counts, aes(source, n, fill =
picture)) +
  geom bar(stat = "identity", position = "dodge")
  labs(x = "", y = "Number of tweets", fill = "")
```


Task 6 Comparison of words

Goals Create a new data frame of words from all the tweets

6. Comparison of words

Step 01

Load the tidytext package

library(tidytext)

Step 02

Create a regex pattern to remove quote tweets reg <- "([^A-Za-z\\d#@']|'(?![A-Za-z\\d#@]))"

Output [06]:

A tibble: 6 x 4

id_str	source	created_at	word
<dbl></dbl>	<chr></chr>	<dttm></dttm>	<chr></chr>
6.053187e+17	Android	2015-06-01 10:23:13	@foxandfriends
6.053187e+17	Android	2015-06-01 10:23:13	enjoy
6.066705e+17	Android	2015-06-05 03:55:04	worst
6.066705e+17	Android	2015-06-05 03:55:04	boring
6.066705e+17	Android	2015-06-05 03:55:04	political
6.066705e+17	Android	2015-06-05 03:55:04	pundits

Step 03

Transform lines of text into words

tweet_words <- cleaned_tweets %>%
 filter(!str_detect(text, '^"')) %>%
 mutate(text = str_replace_all(text,
 "https://t.co/[A-Za-z\\d]+|&", "")) %>%
 unnest_tokens(word, text, token = "regex",
pattern = reg) %>%

Step 04

Remove any stopwords

filter(!word %in% stop_words\$word,

str_detect(word, "[a-z]"))

Task 7 Most common words

Goals Plot the most common words

7. Most common words

Step 01

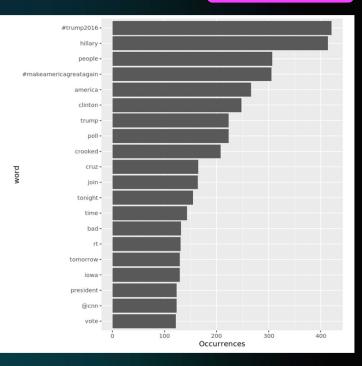
Count the most common words and sort them

tweet_words %>%

count(word, sort = TRUE) %>%

Step 02

Take first 20 words and reorder according to number of occurrences

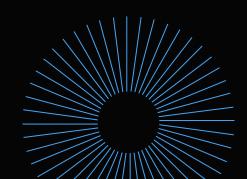

head(20) %>%
mutate(word = reorder(word, n)) %>%

Step 03

Plot the most common words

```
ggplot(aes(word, n)) +
  geom_bar(stat = "identity") +
  ylab("Occurrences") +
  coord_flip()
```

Output [07]:



Task 8 Common words: Android v. iPhone (i)

Goals

To find which words are most common from the Android relative to the iPhone, and vice versa.

Step 01

Count the occurences of each word!

android_iphone_ratios <- tweet_words %>%
 count(word, source)

Step 02

Filter for words that occurs at least 5 times!

```
android_iphone_ratios <- tweet_words %>%
  count(word, source) %>%
  group_by(word) %>%
  filter(sum(n) >= 5)
```

Output [01]:

word	source	n
<chr></chr>	<chr></chr>	<int></int>
#'s	iPhone	4
#1for	Android	1
#2a	iPhone	5
#6days	iPhone	1
#abc2020	iPhone	2
#alconvention2016	iPhone	1

Step 01

Count the occurences of each word!

android_iphone_ratios <- tweet_words %>%
 count(word, source)

Step 02

Filter for words that occurs at least 5 times!

android_iphone_ratios <- tweet_words %>%
 count(word, source) %>%
 group_by(word) %>%
 filter(sum(n) >= 5)

Output [02]:

word	source	n
<chr></chr>	<chr></chr>	<int></int>
#2a	iPhone	5
#americafirst	iPhone	71
#bigleaguetruth	iPhone	24
#caucusfortrump	iPhone	10
#crookedhillary	iPhone	30
#debate	iPhone	7

Step 03

Turn source values into column!

```
android_iphone_ratios <- tweet_words %>%
  count(word, source) %>%
  group_by(word) %>%
  filter(sum(n) >= 5) %>%
  spread(source, n, fill = 0) %>%
  ungroup()
```

Step 04

Create odds ratio for Android and iPhone!

```
android_iphone_ratios <- tweet_words %>%
  (...) %>%
  spread(source, n, fill = 0) %>%
  ungroup() %>%
  mutate_if(is.numeric, ~((. + 1) / sum(. + 1)))
```

Output [03]:

word	Android	iPhone
<chr></chr>	<dbl></dbl>	<dbl></dbl>
#2a	0	5
#americafirst	0	71
#bigleaguetruth	0	24
#caucusfortrump	0	10
#crookedhillary	0	30
#debate	0	7

Step 03

Turn source values into column!

```
android_iphone_ratios <- tweet_words %>%
  count(word, source) %>%
  group_by(word) %>%
  filter(sum(n) >= 5) %>%
  spread(source, n, fill = 0) %>%
  ungroup()
```

Step 04

Create odds ratio for Android and iPhone!

```
android_iphone_ratios <- tweet_words %>%
 (...) %>%
 spread(source, n, fill = 0) %>%
 ungroup() %>%
 mutate if(is.numeric, ~((. + 1) / sum(. + 1)))
```

Output [04]:

word	Android	iPhone
<chr></chr>	<dbl></dbl>	<dbl></dbl>
#2a	7.259001e-05	0.0004790802
#americafirst	7.259001e-05	0.0057489620
#bigleaguetruth	7.259001e-05	0.0019961674
#caucusfortrump	7.259001e-05	0.0008783136
#crookedhillary	7.259001e-05	0.0024752475
#debate	7.259001e-05	0.0006387736

Step 05

Create log ratio: Android divided by iPhone!

```
android_iphone_ratios <- tweet_words %>%
 (...) %>%
 ungroup() %>%
 mutate_if(is.numeric,
        ~((. + 1)/sum(. + 1))) %>%
 mutate(logratio = log2(Android / iPhone))
```

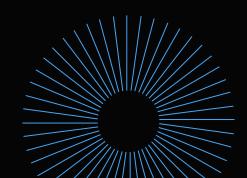
Step 06

Arrange the data!

```
android_iphone_ratios <- tweet_words %>%
 (...) %>%
 mutate_if(is.numeric,
            ~((. + 1)/sum(. + 1))) %>%
 mutate(logratio = log2(Android / iPhone)) %>%
 arrange(desc(logration))
```

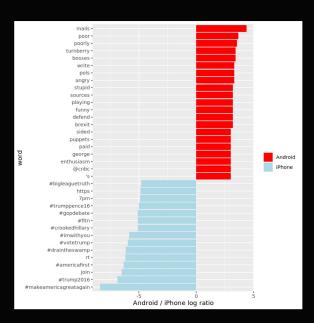
Output [06]:

word	Android	iPhone	logratio
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
mails	0.0016695703	7.984669e-05	4.386100
poor	0.0010162602	7.984669e-05	3.669893
poorly	0.0009436702	7.984669e-05	3.562978
bosses	0.0008710801	7.984669e-05	3.447501
turnberry	0.0008710801	7.984669e-05	3.447501
angry	0.0007984901	7.984669e-05	3.321970



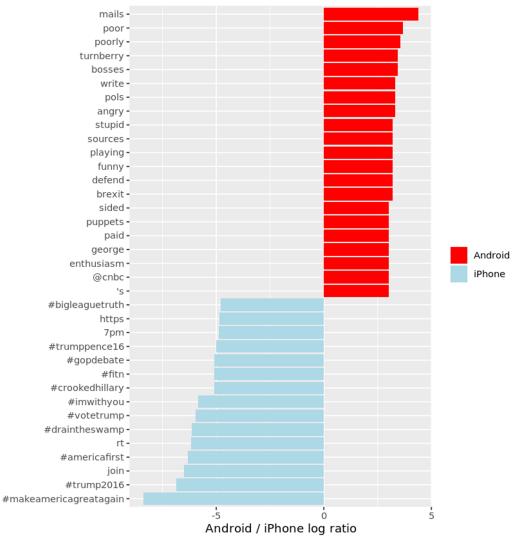
Task 9 Common words: Android v. iPhone (ii)

Goals


To find which words are most common from the Android relative to the iPhone, and vice versa.


```
# Plot the log odds ratio for each word by device
android iphone ratios %>%
  group by(logratio > 0) %>%
  top n(15, abs(logratio)) %>%
  ungroup() %>%
  mutate(word = reorder(word, logratio)) %>%
  ggplot (aes (word, logratio, fill = logratio 0)) +
  geom bar(stat = "identity") +
  coord flip() +
  ylab("Android / iPhone log ratio") +
  scale fill manual(name = "", labels = c("Android",
"iPhone"),
```

values = c("red", "lightblue"))



 $\sim \sim \sim$

- $\sim \sim \sim$
- $\sim \sim \sim$

word

Task 10 | Adding sentiments

Goals To spot the difference in sentiment of each word.

Step 01

Create a sentiment data frame!

nrc <- read_rds("datasets/nrc.rds")</pre>

Step 02

Join nrc with android_iphone_ratios!

android_iphone_sentiment <- android_iphone_ratios %>%
inner join(nrc, by = "word")

Step 03

Remove "positive" and "negative" sentiment!

```
android_iphone_sentiment <- android_iphone_ratios %>%
inner_join(nrc, by = "word")
filter(!sentiment %in% c("positive", "negative"))
```

Output [01]:

word	sentiment
<chr></chr>	<chr></chr>
abacus	trust
abandon	fear
abandon	negative
abandon	sadness
abandoned	anger
abandoned	fear

Step 01

Create a sentiment data frame!

nrc <- read_rds("datasets/nrc.rds")</pre>

Step 02

Join nrc with android_iphone_ratios!

android_iphone_sentiment <- android_iphone_ratios %>%
inner join(nrc, by = "word")

Step 03

Remove "positive" and "negative" sentiment!

```
android_iphone_sentiment <- android_iphone_ratios %>%
inner_join(nrc, by = "word")
filter(!sentiment %in% c("positive", "negative"))
```

Output [02]:

word	Android	iPhone	logratio	sentiment
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>
poorly	0.0009436702	7.984669e-05	3.562978	negative
angry	0.0007984901	7.984669e-05	3.321970	anger
angry	0.0007984901	7.984669e-05	3.321970	disgust
angry	0.0007984901	7.984669e-05	3.321970	negative
defend	0.0007259001	7.984669e-05	3.184466	fear
defend	0.0007259001	7.984669e-05	3.184466	positive

Step 01

Create a sentiment data frame!

nrc <- read_rds("datasets/nrc.rds")</pre>

Step 02

Join nrc with android_iphone_ratios!

android_iphone_sentiment <- android_iphone_ratios %>%
inner join(nrc, by = "word")

Step 03

Remove "positive" and "negative" sentiment!

```
android_iphone_sentiment <- android_iphone_ratios %>%
inner_join(nrc, by = "word")
filter(!sentiment %in% c("positive", "negative"))
```

Output [03]:

word	Android	iPhone	logratio	sentiment
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>
angry	0.0007984901	7.984669e-05	3.321970	anger
angry	0.0007984901	7.984669e-05	3.321970	disgust
defend	0.0007259001	7.984669e-05	3.184466	fear
enthusiasm	0.0006533101	7.984669e-05	3.032463	anticipation
enthusiasm	0.0006533101	7.984669e-05	3.032463	joy
enthusiasm	0.0006533101	7.984669e-05	3.032463	surprise

Step 04

Reorder the values of sentiment and word!

android_iphone_sentiment <- android_iphone_ratios
%>%

Step 05

Take the top 10 values of each sentiment group!

```
android_iphone_sentiment <- android_iphone_ratios %>%
  (...) %>%
  group_by(sentiment) %>%
  top_n(10, abs(logratio)) %>%
  ungroup()
```

Output [04]:

word	Android	iPhone	logratio	sentiment
<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>
angry	0.0007984901	7.984669e-05	3.321970	anger
angry	0.0007984901	7.984669e-05	3.321970	disgust
defend	0.0007259001	7.984669e-05	3.184466	fear
enthusiasm	0.0006533101	7.984669e-05	3.032463	anticipation
enthusiasm	0.0006533101	7.984669e-05	3.032463	joy
enthusiasm	0.0006533101	7.984669e-05	3.032463	surprise

Step 04

Reorder the values of sentiment and word!

android_iphone_sentiment <- android_iphone_ratios
%>%

Step 05

Take the top 10 values of each sentiment group!

```
android_iphone_sentiment <- android_iphone_ratios %>%
  (...) %>%
  group_by(sentiment) %>%
  top_n(10, abs(logratio)) %>%
  ungroup()
```

Output [05]:

word	Android	iPhone	logratio	sentiment
<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>
angry	0.0007984901	7.984669e-05	3.321970	anger
angry	0.0007984901	7.984669e-05	3.321970	disgust
defend	0.0007259001	7.984669e-05	3.184466	fear
enthusiasm	0.0006533101	7.984669e-05	3.032463	anticipation
enthusiasm	0.0006533101	7.984669e-05	3.032463	јоу
enthusiasm	0.0006533101	7.984669e-05	3.032463	surprise
badly	0.0025406504	3.193868e-04	2.991821	sadness
crazy	0.0016695703	2.395401e-04	2.801138	anger
crazy	0.0016695703	2.395401e-04	2.801138	fear
crazy	0.0016695703	2.395401e-04	2.801138	sadness

Task 11 Android vs. iPhone sentiments

Goals

Plot the log odds ratio of each word from both devices by sentiment

11. Android vs. iPhone sentiments

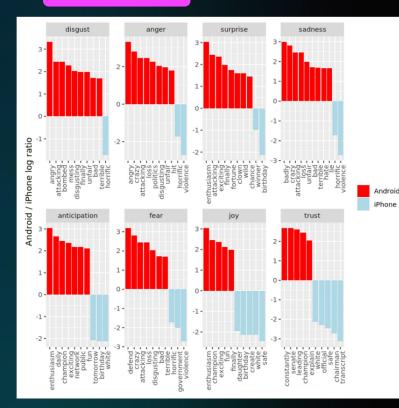
Step 01

Plot the data frame

ggplot(android_iphone_sentiment, aes(word, logratio, fill = logratio < 0)) +</pre>

Step 02

Facet the data by sentiment and create two rows


facet_wrap(~ sentiment, scales = "free", nrow =
2) +

Step 03

Map the data frame using geom_bar

```
geom_bar(stat = "identity") + theme(axis.text.x =
element_text(angle = 90, hjust = 1)) + labs(x =
"", y = "Android / iPhone log ratio") +
scale_fill_manual(name = "", labels =
c("Android", "iPhone"), values = c("red",
"lightblue"))
```

Output [11]:

Discussion

Result Discussion and Our Innovative Idea

Conclusion: The ghost in the political machine

There's a difference in style and sentiment between Trump's tweets from the Android and the iPhone. We know Trump used the Android until March 2017, but who was tweeting from the iPhone on Trump's behalf? I was fascinated by a New Yorker article about Tony Schwartz, Trump's ghostwriter for The Art of the Deal. Of particular interest was how Schwartz imitated Trump's voice and philosophy:

In his journal, Schwartz describes the process of trying to make Trump's voice palatable in the book. It was kind of "a trick," he writes, to mimic Trump's blunt, staccato, no-apologies delivery while making him seem almost boyishly appealing.... Looking back at the text now, Schwartz says, "I created a character far more winning than Trump is."

A lot has been written about Trump's mental state. But I'd rather get inside the head of the anonymous staffer whose job is to imitate Trump's unique cadence ("Very sad!") or put a positive spin on it, to millions of his followers. Are they a true believer, or just a cog in a political machine, mixing whatever mainstream appeal they can into the @realDonaldTrump concoction? Like Tony Schwartz, will they one day regret their involvement?

Group Idea: Misinformation Surrounding Monkeypox

Monkeypox travelled to Canada. The unvaccinated can't travel to Canada. 😕

WHAT IF monkeypox is the cover for symptoms of vaccine induced autoimmune conditions....?

FALSE

v 21, 2022 · Twitter for Android

Who is surprised that after millions of people have been injected with genetically modified chimp virus, there is now an outbreak of monkeypox?

12:33 PM · May 20, 2022 · Twitter Web App

MISLEADING

weets 6,352 Likes

BBlues60 @BBlues60

Shingles is the monkey pox because it's all a hoax, it's from the side effects from the Pfizer vaccines

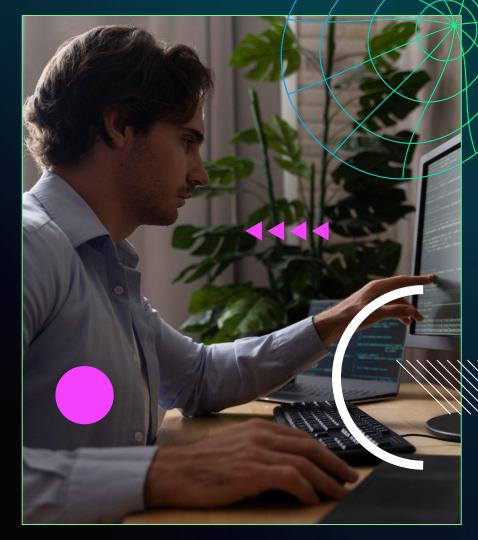
11:49 PM · May 22, 2022 · Twitter for iPhone

Group Idea: Misinformation Surrounding Monkeypox

 \bigcirc

Basic Concept

Analyze misinformation (hoax) regarding Monkeypox in Twitter using R.


Methods

Using text mining to compare every single words in hoax tweets with real information regarding Monkeypox.

THANK YOU!

Do you have any questions?

